Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Zhongguo Yi Liao Qi Xie Za Zhi ; 47(6): 602-607, 2023 Nov 30.
Artículo en Chino | MEDLINE | ID: mdl-38086714

RESUMEN

OBJECTIVE: Reduce the number of false alarms and measurement time caused by movement interference by the sync waveform of the movement. METHODS: Vital signal monitoring system based on motion sensor was developed, which collected and processed the vital signals continuously, optimized the features and results of vital signals and transmitted the vital signal results and alarms to the interface. RESULTS: The system was tested in many departments, such as digestive department, cardiology department, internal medicine department, hepatobiliary surgery department and emergency department, and the total collection time was 1 940 h. The number of false electrocardiograph (ECG) alarms decreased by 82.8%, and the proportion of correct alarms increased by 28%. The average measurement time of non-invasive blood pressure (NIBP) decreased by 16.1 s. The total number of false respiratory rate measurement decreased by 71.9%. CONCLUSIONS: False alarms and measurement failures can be avoided by the vital signal monitoring system based on accelerometer to reduce the alarm fatigue in clinic.


Asunto(s)
Alarmas Clínicas , Electrocardiografía , Humanos , Monitoreo Fisiológico , Arritmias Cardíacas , Presión Sanguínea , Acelerometría
2.
J Ind Microbiol Biotechnol ; 49(6)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36367297

RESUMEN

A system for co-cultivation of anaerobic fungi with anaerobic bacteria was established based on lactate cross-feeding to produce butyrate and butanol from plant biomass. Several co-culture formulations were assembled that consisted of anaerobic fungi (Anaeromyces robustus, Neocallimastix californiae, or Caecomyces churrovis) with the bacterium Clostridium acetobutylicum. Co-cultures were grown simultaneously (e.g., 'one pot'), and compared to cultures where bacteria were cultured in fungal hydrolysate sequentially. Fungal hydrolysis of lignocellulose resulted in 7-11 mM amounts of glucose and xylose, as well as acetate, formate, ethanol, and lactate to support clostridial growth. Under these conditions, one-stage simultaneous co-culture of anaerobic fungi with C. acetobutylicum promoted the production of butyrate up to 30 mM. Alternatively, two-stage growth slightly promoted solventogenesis and elevated butanol levels (∼4-9 mM). Transcriptional regulation in the two-stage growth condition indicated that this cultivation method may decrease the time required to reach solventogenesis and induce the expression of cellulose-degrading genes in C. acetobutylicum due to relieved carbon-catabolite repression. Overall, this study demonstrates a proof of concept for biobutanol and bio-butyrate production from lignocellulose using an anaerobic fungal-bacterial co-culture system.


Asunto(s)
Butanoles , Clostridium acetobutylicum , Butanoles/metabolismo , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Butiratos/metabolismo , Anaerobiosis , Celulosa/metabolismo , 1-Butanol/metabolismo , Ácido Láctico/metabolismo , Hongos/metabolismo , Fermentación
3.
Zhongguo Yi Liao Qi Xie Za Zhi ; 45(5): 585-590, 2021 Sep 30.
Artículo en Chino | MEDLINE | ID: mdl-34628778

RESUMEN

OBJECTIVE: The patient monitors were used to explore the alarm actuality in a ICU and NICU to investigate the awareness and reaction of medical staff to alarms. METHODS: A series of surveys and interviews were taken to acquire clinicians' feelings and attitudes to monitoring alarms. The researchers were scheduled to track the alarms with annotations, and collect the alarm data of patient monitors using central monitoring system. RESULTS: A total of 235 387 and 67 783 alarms occurred in ICU and NICU respectively. The average alarm rate was about 142 alarms/patient-day in ICU and 96 alarms/patient-day in NICU. CONCLUSIONS: There remains alarm fatigue in ICU and NICU, the main reason is the large number of false alarms and clinically irrelevant alarms. In addition, patient monitor is still in the level of threshold alarms or combined alarms, the data integrity and intelligence level need to be improved in future.


Asunto(s)
Alarmas Clínicas , Unidades de Cuidado Intensivo Neonatal , Electrocardiografía , Humanos , Recién Nacido , Monitoreo Fisiológico
4.
Sci Rep ; 11(1): 29, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420096

RESUMEN

Clostridium acetobutylicum ATCC 824 effectively utilizes a wide range of substrates to produce commodity chemicals. When grown on substrates of different oxidation states, the organism exhibits different recycling needs of reduced intracellular electron carrying co-factors. Ratios of substrates with different oxidation states were used to modulate the need to balance electron carriers and demonstrate fine-tuned control of metabolic output. Three different oxidized substrates were first fed singularly, then in different ratios to three different strains of Clostridium sp. Growth was most robust when fed glucose in exclusive fermentations. However, the use of the other two more oxidized substrates was strain-dependent in exclusive feeds. In glucose-galacturonate mixed fermentation, the main products (acetate and butyrate) were dependant on the ratios of the substrates. Exclusive fermentation on galacturonate was nearly homoacetic. Co-utilization of galacturonate and glucose was observed from the onset of fermentation in growth conditions using both substrates combined, with the proportion of galacturonate present dictating the amount of acetate produced. For all three strains, increasing galacturonate content (%) in a mixture of galacturonate and glucose from 0 to 50, and 100, resulted in a corresponding increase in the amount of acetate produced. For example, C. acetobutylicum increased from ~ 10 mM to ~ 17 mM, and then ~ 23 mM. No co-utilization was observed when galacturonate was replaced with gluconate in the two substrate co-feed.

5.
Zhongguo Yi Liao Qi Xie Za Zhi ; 44(6): 481-486, 2020 Dec 08.
Artículo en Chino | MEDLINE | ID: mdl-33314853

RESUMEN

OBJECTIVE: In order to solve alarm fatigue, the algorithm optimization strategies were researched to reduce false and worthless alarms. METHODS: A four-lead arrhythmia analysis algorithm, a multiparameter fusion analysis algorithm, an intelligent threshold reminder, a refractory period delay technique were proposed and tested with collected 28 679 alarms in multi-center study. RESULTS: The sampling survey indicate that the 80.8% of arrhythmia false alarms were reduced by the four-lead analysis, the 55.9% of arrhythmia and pulse false alarms were reduced by the multi-parameter fusion analysis, the 28.0% and 29.8% of clinical worthless alarms were reduced by the intelligent threshold and refractory period delay techniques respectively. Finally, the total quantity of alarms decreased to 12 724. CONCLUSIONS: To increase the dimensionality of parametric analysis and control the alarm limits and delay time are conducive to reduce alarm fatigue in intensive care units.


Asunto(s)
Fatiga de Alerta del Personal de Salud/prevención & control , Arritmias Cardíacas/diagnóstico , Alarmas Clínicas , Unidades de Cuidados Intensivos , Humanos , Monitoreo Fisiológico
6.
mSystems ; 3(5)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30374459

RESUMEN

Bacterial fermentation of carbohydrates from sustainable lignocellulosic biomass into commodity chemicals by the anaerobic bacterium Clostridium acetobutylicum is a promising alternative source to fossil fuel-derived chemicals. Recently, it was demonstrated that xylose is not appreciably fermented in the presence of arabinose, revealing a hierarchy of pentose utilization in this organism (L. Aristilde, I. A. Lewis, J. O. Park, and J. D. Rabinowitz, Appl Environ Microbiol 81:1452-1462, 2015, https://doi.org/10.1128/AEM.03199-14). The goal of the current study is to characterize the transcriptional regulation that occurs and perhaps drives this pentose hierarchy. Carbohydrate consumption rates showed that arabinose, like glucose, actively represses xylose utilization in cultures fermenting xylose. Further, arabinose addition to xylose cultures led to increased acetate-to-butyrate ratios, which indicated a transition of pentose catabolism from the pentose phosphate pathway to the phosphoketolase pathway. Transcriptome sequencing (RNA-Seq) confirmed that arabinose addition to cells actively growing on xylose resulted in increased phosphoketolase (CA_C1343) mRNA levels, providing additional evidence that arabinose induces this metabolic switch. A significant overlap in differentially regulated genes after addition of arabinose or glucose suggested a common regulation mechanism. A putative open reading frame (ORF) encoding a potential catabolite repression phosphocarrier histidine protein (Crh) was identified that likely participates in the observed transcriptional regulation. These results substantiate the claim that arabinose is utilized preferentially over xylose in C. acetobutylicum and suggest that arabinose can activate carbon catabolite repression via Crh. Furthermore, they provide valuable insights into potential mechanisms for altering pentose utilization to modulate fermentation products for chemical production. IMPORTANCE Clostridium acetobutylicum can ferment a wide variety of carbohydrates to the commodity chemicals acetone, butanol, and ethanol. Recent advances in genetic engineering have expanded the chemical production repertoire of C. acetobutylicum using synthetic biology. Due to its natural properties and genetic engineering potential, this organism is a promising candidate for converting biomass-derived feedstocks containing carbohydrate mixtures to commodity chemicals via natural or engineered pathways. Understanding how this organism regulates its metabolism during growth on carbohydrate mixtures is imperative to enable control of synthetic gene circuits in order to optimize chemical production. The work presented here unveils a novel mechanism via transcriptional regulation by a predicted Crh that controls the hierarchy of carbohydrate utilization and is essential for guiding robust genetic engineering strategies for chemical production.

7.
Microbiology (Reading) ; 161(Pt 2): 430-440, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25481877

RESUMEN

Clostridium acetobutylicum's metabolic pathways have been studied for decades due to its metabolic diversity and industrial value, yet many details of its metabolism continue to emerge. The flux through the recently discovered pentose phosphoketolase pathway (PKP) in C. acetobutylicum has been determined for growth on xylose but transcriptional analysis indicated the pathway may have a greater contribution to arabinose metabolism. To elucidate the role of xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (XFP), and the PKP in C. acetobutylicum, experimental and computational metabolic isotope analyses were performed under growth conditions of glucose or varying concentrations of xylose and arabinose. A positional bias in labelling between carbons 2 and 4 of butyrate was found and posited to be due to an enzyme isotope effect of the thiolase enzyme. A correction for the positional bias was applied, which resulted in reduction of residual error. Comparisons between model solutions with low residual error indicated flux through each of the two XFP reactions was variable, while the combined flux of the reactions remained relatively constant. PKP utilization increased with increasing xylose concentration and this trend was further pronounced during growth on arabinose. Mutation of the gene encoding XFP almost completely abolished flux through the PKP during growth on arabinose and resulted in decreased acetate/butyrate ratios. Greater flux through the PKP during growth on arabinose when compared with xylose indicated the pathway's primary role in C. acetobutylicum is arabinose metabolism.


Asunto(s)
Aldehído-Liasas/metabolismo , Arabinosa/metabolismo , Proteínas Bacterianas/metabolismo , Clostridium acetobutylicum/enzimología , Clostridium acetobutylicum/crecimiento & desarrollo , Aldehído-Liasas/genética , Proteínas Bacterianas/genética , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucosa/metabolismo , Vía de Pentosa Fosfato
8.
Microb Cell Fact ; 13: 139, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25231163

RESUMEN

BACKGROUND: Clostridium acetobutylicum fermentations are promising for production of commodity chemicals from heterogeneous biomass due to the wide range of substrates the organism can metabolize. Much work has been done to elucidate the pathways for utilization of aldoses, but little is known about metabolism of more oxidized substrates. Two oxidized hexose derivatives, gluconate and galacturonate, are present in low cost feedstocks, and their metabolism will contribute to overall metabolic output of these substrates. RESULTS: A complete metabolic network for glucose, gluconate, and galacturonate utilization was generated using online databases, previous studies, genomic context, and experimental data. Gluconate appears to be metabolized via the Entner-Doudoroff pathway, and is likely dehydrated to 2-keto-3-deoxy-gluconate before phosphorylation to 2-keto-3-deoxy-6-P-gluconate. Galacturonate appears to be processed via the Ashwell pathway, converging on a common metabolite for gluconate and galacturonate metabolism, 2-keto-3-deoxygluconate. As expected, increasingly oxidized substrates resulted in increasingly oxidized products with galacturonate fermentations being nearly homoacetic. Calculations of expected ATP and reducing equivalent yields and experimental data suggested galacturonate fermentations were reductant limited. Galacturonate fermentation was incomplete, which was not due solely to product inhibition or the inability to utilize low concentrations of galacturonate. Removal of H2 and CO2 by agitation resulted in faster growth, higher cell densities, formation of relatively more oxidized products, and higher product yields for cultures grown on glucose or gluconate. In contrast, cells grown on galacturonate showed reduced growth rates upon agitation, which was likely due to loss in reductant in the form of H2. The growth advantage seen on agitated glucose or gluconate cultures could not be solely attributed to improved ATP economics, thereby indicating other factors are also important. CONCLUSIONS: The metabolic network presented in this work should facilitate similar reconstructions in other organisms, and provides a further understanding of the pathways involved in metabolism of oxidized feedstocks and carbohydrate mixtures. The nearly homoacetic fermentation during growth on galacturonate indicates further optimization of this and related organisms could provide a route to an effective biologically derived acetic acid production platform. Furthermore, the pathways could be targeted to decrease production of undesirable products during fermentations of heterogeneous biomass.


Asunto(s)
Clostridium acetobutylicum/metabolismo , Fermentación , Hexosas/metabolismo , Acetatos/metabolismo , Adenosina Trifosfato/metabolismo , Reactores Biológicos/microbiología , Carbono/farmacología , Dióxido de Carbono/metabolismo , Cromatografía Líquida de Alta Presión , Clostridium acetobutylicum/efectos de los fármacos , Clostridium acetobutylicum/crecimiento & desarrollo , Fermentación/efectos de los fármacos , Ácidos Hexurónicos/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos
9.
Biomacromolecules ; 4(3): 841-9, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12741807

RESUMEN

Substrate-supported lipid bilayers have been prepared from bis-diene functionalized phosphorylcholine (PC) lipids and polymerized by UV irradiation. The overall bilayer structure is largely preserved upon removal from water, although significant loss of material occurs from the upper leaflet of the bilayer, likely due to desorption at the air/water interface. The morphology and surface structure of the bilayer, as observed by AFM, indicate a substantially different arrangement of the lipids in the hydrated and dehydrated states, presumably due to the loss of water from the near surface region. These changes have been correlated with infrared spectral shifts sensitive to the conformation of the hydrocarbon chains. Protein adsorption studies show that rehydrated, polymerized bilayers retain a degree of resistance to BSA adsorption intermediate between model hydrophobic and fluid PC lipid bilayer surfaces. The degree of protein adsorption is correlated with desorption of material from the upper leaflet of the bilayer upon drying, which produces voids at which hydrophobically driven protein adsorption occurs.


Asunto(s)
Membrana Dobles de Lípidos/síntesis química , Membrana Dobles de Lípidos/efectos de la radiación , Polímeros/síntesis química , Polímeros/efectos de la radiación , Rayos Ultravioleta , Membrana Dobles de Lípidos/metabolismo , Metabolismo de los Lípidos , Lípidos/síntesis química , Lípidos/efectos de la radiación , Polímeros/metabolismo
10.
J Am Chem Soc ; 124(21): 6037-42, 2002 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-12022837

RESUMEN

The cross-linking of supramolecular assemblies of hydrated lipids is an effective method to stabilize these assemblies to disruption by surfactants or aqueous alcohol. The heterobifunctional lipids, Acryl/DenPC(16,18) and Sorb/DenPC(18,21), are examples of a new class of polymerizable lipid designed for the creation of cross-linked lipid structures. The robust nature of cross-linked liposomes was demonstrated by lyophilization of the liposomes followed by their essentially complete redispersion in water. The resulting liposomes were compared to the original sample by quasi-elastic light scattering and transmission electron microscopy. There was no major change in the size or structure of the cross-linked liposomes after rehydration of the freeze-dried powder of liposomes. Moreover, the rehydrated cross-linked liposomes continued to be resistant to surfactant solubilization. Neutral cross-linked liposomes were predominantly redispersed after freeze-drying with the aid of bath sonication. The small amount of residual liposome aggregation observed with neutral liposomes could be prevented by incorporating a surface charge into the liposome or attaching hydrophilic polymers, for example, poly(ethylene glycol), onto the liposome.


Asunto(s)
Membrana Dobles de Lípidos/química , Lípidos/química , Liposomas/química , Reactivos de Enlaces Cruzados/química , Liofilización , Nanotecnología , Solubilidad , Propiedades de Superficie , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...